Edit on GitHub
Fast.ai
DVCLive allows you to add experiment tracking capabilities to your Fast.ai projects.
Usage
Include the
DVCLiveCallback
in the callbacks list passed to your
Learner
:
from dvclive.fastai import DVCLiveCallback
...
learn = tabular_learner(data_loader, metrics=accuracy)
learn.fit_one_cycle(
n_epoch=2,
cbs=[DVCLiveCallback()])
Each metric will be logged to:
{Live.plots_dir}/metrics/{split}/{metric}.tsv
Where:
{Live.plots_dir}
is defined inLive
.{split}
can be eithertrain
oreval
.{metric}
is the name provided by the framework.
Parameters
-
live
- (None
by default) - OptionalLive
instance. IfNone
, a new instance will be created using**kwargs
. -
**kwargs
- Any additional arguments will be used to instantiate a newLive
instance. Iflive
is used, the arguments are ignored.
Examples
- Using
live
to pass an existingLive
instance.
from dvclive import Live
from dvclive.fastai import DVCLiveCallback
with Live("custom_dir") as live:
learn = tabular_learner(data_loader, metrics=accuracy)
learn.fit_one_cycle(
n_epoch=2,
cbs=[DVCLiveCallback(live=live)])
# Log additional metrics after training
live.log_metric("summary_metric", 1.0, plot=False)
- Using
**kwargs
to customize the newLive
instance.
learn.fit_one_cycle(
n_epoch=2,
cbs=[DVCLiveCallback(dir="custom_dir")])