Edit on GitHub

Keras

DVCLive allows you to add experiment tracking capabilities to your Keras projects.

Usage

Include the DVCLiveCallback in the callbacks list passed to your Model:

from dvclive.keras import DVCLiveCallback

...

model.fit(
    train_dataset, epochs=num_epochs, validation_data=validation_dataset,
    callbacks=[DVCLiveCallback()])

Each metric will be logged to:

{Live.plots_dir}/metrics/{split}/{metric}.tsv

Where:

  • {Live.plots_dir} is defined in Live.
  • {split} can be either train or eval.
  • {metric} is the name provided by the framework.

Parameters

  • live - (None by default) - Optional Live instance. If None, a new instance will be created using **kwargs.

  • **kwargs - Any additional arguments will be used to instantiate a new Live instance. If live is used, the arguments are ignored.

Examples

  • Using live to pass an existing Live instance.
from dvclive import Live
from dvclive.keras import DVCLiveCallback

with Live("custom_dir") as live:
    model.fit(
        train_dataset,
        epochs=num_epochs,
        validation_data=validation_dataset,
        callbacks=[DVCLiveCallback(live=live)])

    model.load_weights(os.path.join("model", "best_model"))

    # Log additional data after training
    test_loss, test_acc = model.evaluate(test_dataset)
    live.log_metric("test_loss", test_loss, plot=False)
    live.log_metric("test_acc", test_acc, plot=False)
  • Using **kwargs to customize the new Live instance.
model.fit(
    train_dataset,
    epochs=num_epochs,
    validation_data=validation_dataset,
    callbacks=[DVCLiveCallback(dir="custom_dir")])
Content

๐Ÿ› Found an issue? Let us know! Or fix it:

Edit on GitHub

โ“ Have a question? Join our chat, we will help you:

Discord Chat