Edit on GitHub
XGBoost
DVCLive allows you to add experiment tracking capabilities to your XGBoost projects.
Usage
Include the
DVCLiveCallback
in the callbacks list passed to the xgboost.train
call:
from dvclive.xgb import DVCLiveCallback
...
model = xgb.XGBClassifier(
n_estimators=100,
early_stopping_rounds=5,
eval_metric=["merror", "mlogloss"],
callbacks=[DVCLiveCallback()]
)
model.fit(
X_train,
y_train,
eval_set=[(X_test, y_test)]
)
Parameters
-
live
- (None
by default) - OptionalLive
instance. IfNone
, a new instance will be created using**kwargs
. -
**kwargs
- Any additional arguments will be used to instantiate a newLive
instance. Iflive
is used, the arguments are ignored.
Examples
- Using
live
to pass an existingLive
instance.
from dvclive import Live
from dvclive.xgb import DVCLiveCallback
...
with Live("custom_dir") as live:
model = xgb.XGBClassifier(
n_estimators=100,
early_stopping_rounds=5,
eval_metric=["merror", "mlogloss"],
callbacks=[DVCLiveCallback()]
)
model.fit(
X_train,
y_train,
eval_set=[(X_test, y_test)]
)
# Log additional metrics after training
live.log_metric("summary_metric", 1.0, plot=False)
- Using
**kwargs
to customizeLive
.
model = xgb.XGBClassifier(
...
callbacks=[DVCLiveCallback(dir="custom_dir")]
)