Edit on GitHub
scikit-learn
DVCLive allows you to add experiment tracking capabilities to your Scikit-learn projects.
Usage
You need to create a Live
instance and include calls to
log data.
DVCLive provides built-in functions to generate
scikit learn plots, see
Live.log_sklearn_plot()
.
The following snippet is used inside the Colab Notebook linked above:
from DVCLive import Live
...
with Live() as live:
live.log_param("n_estimators", n_estimators)
clf = RandomForestClassifier(n_estimators=n_estimators)
clf.fit(X_train, y_train)
y_train_pred = clf.predict(X_train)
live.log_metric("train/f1", f1_score(y_train, y_train_pred, average="weighted"), plot=False)
live.log_sklearn_plot(
"confusion_matrix", y_train, y_train_pred, name="train/confusion_matrix",
title="Train Confusion Matrix")
y_test_pred = clf.predict(X_test)
live.log_metric("test/f1", f1_score(y_test, y_test_pred, average="weighted"), plot=False)
live.log_sklearn_plot(
"confusion_matrix", y_test, y_test_pred, name="test/confusion_matrix",
title="Test Confusion Matrix")